IEHP UM Subcommittee Approved Authorization Guidelines

Magnetic Resonance Spectroscopy

Policy:
Based on the information reviewed, IEHP’s UM Subcommittee consider Magnetic Resonance Spectroscopy (MRS) to be investigational and not medically necessary. Although MRS can accurately delineate the chemical composition of the tissue under study and is able to distinguish necrosis from tumor recurrence, it is not superior to any other advanced imaging in the diagnosis of brain tumors. No well-designed, multi-center, controlled clinical trials have demonstrated improved clinical outcomes nor a cost-benefit analysis in patients evaluated with MRS compared to other conventional imaging modalities.

CPT Code Not Covered:
- 76390

Centers for Medicare and Medical Services (2004):
In 2004, Centers for Medicare and Medical Services (CMS) reaffirmed its national non-coverage determination for all indications of MRS with CPT code 76390 after considering it an investigational procedure.

Medical:
Medical has designated MRS with CPT code 76390 as a non-benefit.

Medical Review Criteria Guidelines for Managing Care (Apollo):
MRS is not covered by Medicare and certain health plans due to an investigational status. Clinical validity and reliability as a diagnostic tool is not universally accepted. MRS does not meet TEC or Medicare medical necessity criteria.

American College of Radiology (ACR) considers MRS to be a “proven and useful method for the evaluation, assessment of severity, and follow up of diseases of the brain and other regions of the body. MRS should be performed only for a valid medical reason.”

Potential indications for MRS per ACR are: brain tumors, infections, seizures, neurodegenerative diseases, injuries, demyelination disorders, developmental disorders, and metabolic disorders affecting the brain.
Agency for Healthcare Research and Quality (2003):
Tuft’s-New England Medical Center Evidence-based Practice Center evaluated the use of MRS in brain tumors for the Agency for Healthcare Research and Quality (AHRQ) (Jordan, 2003). The conclusion stated that "human studies conducted on the use of MRS for brain tumors demonstrate that this non-invasive method is technically feasible and suggest potential benefits for some of the proposed indications. However, there is a paucity of high quality direct evidence demonstrating the impact on diagnostic thinking and therapeutic decision making… In summary, while there are a large number of studies that confirm MRS's technical feasibility, there are very few published studies to evaluate its diagnostic accuracy and whether it can positively affect diagnostic thinking and therapeutic choice. Those studies that do address these areas often have significant design flaws including inadequate sample size, retrospective design and other limitations that could bias the results." (Jordan, 2003)

Aetna Clinical Policy Bulletin Number 0202 (2012):
On April 2012, Aetna stated they consider MRS to be experimental and investigational because of the lack of evidence in the medical literature of its efficacy.

CIGNA Number 0244 (2011):
On November 2011, Cigna reported they deemed MRS as medically necessary for the following indications:

2. Evaluation of a brain tumor in a child when additional information is needed to plan treatment.
3. Evaluation of a rare inherited disorder affecting the central nervous system (e.g., mitochondrial encephalopathies [Leigh’s disease; mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke (MELAS) syndrome], lysosomal storage disease [Neimann-Pick disease, mucopolysaccharidoses], aminoacidopathies [phenylketonuria, methylmalonic acidemia], galactosemia, cerebral creatine deficiency syndromes, and adrenoleukodystrophy).

Blue Shield California Medical Policy (2012):
MRS with CPT code 76390 is considered investigational for all indications.

Anthem Medical Policy Number RAD.00022:
MRS considered medically necessary when used to:
- Differentiate recurrent or residual brain tumor from post-therapy changes.
- Differentiate brain tumor from other non-tumor diagnoses.

MRS considered investigational and not medically necessary when used to:
### Summary of relevant literature review:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Purpose</th>
<th>Sample size</th>
<th>Findings</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alam et al., 2011</td>
<td>Describe the spectrum of MRS in focal brain lesions and determine diagnostic accuracy using histopathology as gold standard in differentiating neoplastic and non-neoplastic lesions.</td>
<td>53 subjects with focal brain lesions on MRI.</td>
<td>MRS has sensitivity of 93%, specificity of 70%, PPV of 93%, NPV of 70%, diagnostic accuracy of 89%, and kappa statistic between MRS and MRI of 0.630 (p-value, &lt;0.001)</td>
<td>MRS has a high sensitivity and low specificity making it inadequate as a definitive diagnostic tool. This modality should only be used as an adjunct to conventional imaging and not as a replacement for histopathological evaluation.</td>
</tr>
<tr>
<td>Senft et al., 2009</td>
<td>Compare normalized mean and maximum levels of Cho in noninvasive grading of gliomas</td>
<td>63 subjects with suspected WHO grade II or III gliomas. (grade I excluded since Cho levels are inconsistent)</td>
<td>ROC curve analysis rendered optimum cutoff value of 2.02 with sensitivity 86% and specificity 77.8%</td>
<td>Cho max influences therapeutic decision making but cannot replace biopsy.</td>
</tr>
</tbody>
</table>
| Prat et al., 2009 | Retrospective analysis: Identify which advanced imaging is better at distinguishing recurrence from necrosis and identifying tumor upgrading. | 26 subjects with histologically proven cerebral glioma.                    | Predicting presence of high grade gliomas:  
-PPV: MRP=100%, MRS=91.6%, FDG-PET=75%, MRI=50%  
-NPV: MRP=100%, MRS=100%, FDG-PET=61%  
Differentiate between glioma and necrosis:  
-PPV: MRP and MRS=100%, FDG-PET=66%  
-NPV: MRP and MRS=100%, FDG-PET=60%                                                                 | MRS and MRP are superior to FDG-PET in discriminating recurrence from necrosis. MRI gives a high false positive rate.                                                                                           |
| Marcus et al., 2006 | Increase ability to predict survival by combining info from biological metabolites by MRS. | 76 children with brain tumors (WHO I-IV)                                | Choline +1 Lipid/Lactate was the only independent predictor of survival, better than histopathology.                                                                                                        | MRS measurement of biomarkers (cho+L), enhances ability to predict survival in children.                                                                                                                |

Note: Cho= Choline, WHO= World Health Organization, L= lipid, PPV= positive predictive value, MRP= magnetic resonance perfusion, MRS= magnetic resonance spectroscopy, FDG-PET= 2-((18F) fluoro-2-deoxy-D-glucose positron emission tomography, MRI= magnetic resonance imaging, NPV= negative predictive value
Background:

Magnetic Resonance Spectroscopy is a non-invasive diagnostic test that uses magnetic fields to detect the chemical composition of the tissue under study. MRS measures low molecular weight chemicals within the tissue and provides direct in vivo biochemical information. The primary difference between an MRS and a magnetic resonance imaging (MRI) is that an MRI identifies the anatomic location of a lesion and an MRS compares the chemical composition of a normal tissue with an abnormal tumor tissue.

Effective Date: August 22, 2012
Reviewed Annually: November 9, 2016

Bibliography:


Disclaimer

IEHP Clinical Authorization Guidelines (CAG) are developed to assist in administering plan benefits, they do not constitute a description of plan benefits. The Clinical Authorization Guidelines (CAG) express IEHP's determination of whether certain services or supplies are medically necessary, experimental and investigational, or cosmetic. IEHP has reached these conclusions based upon a review of currently available clinical information (including clinical outcome studies in the peer-reviewed published medical literature, regulatory status of the technology, evidence-based guidelines of public health and health research agencies, evidence-based guidelines and positions of leading national health professional organizations, views of physicians practicing in relevant clinical areas, and other relevant factors). IEHP makes no representations and accepts no liability with respect to the content of any external information cited or relied upon in the Clinical Authorization Guidelines (CAG). IEHP expressly and solely reserves the right to revise the Clinical Authorization Guidelines (CAG), as clinical information changes.